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In order to extinguish shock waves (SW) in gasdynamic laser pulse systems we make use 
of permeable shields in the form of wire grids or perforated barriers [i]. A review of 
the methods to calculate the weakening effect of such shields with respect to SW is presented 
in [2]. In the present study we offer a semiempirical method of calculating SW attenuation 
by means of permeable barriers, said method based on an idea raised in [3]. 

i. Weakening of a SW with a Single Permeable Barrier. Let us examine the evolution 
of a plane SW with a stepped profile subsequent to entering a nonmoving permeable shield 
positioned in the (x l, x 2) segment. Without going into the details of the wave-field dia- 
gram as the SW interacts with the barrier, let us hypothecate that the following condition, 
valid for an overtaking characteristic, is satisfied at the SW passing through the shield: 

(u "4- a) dp /dx  ...}- ap (u + a) du /dx  = [(? - -  1) u - -  a] /(pu2/2),  ( 1 . 1 )  

where  u i s  t h e  v e l o c i t y  o f  g a s ;  a i s  t h e  s p e e d  o f  sound ;  p i s  t h e  p r e s s u r e ;  p i s  t h e  d e n s i t y ;  
y i s  t h e  h e a t - c a p a c i t y  r a t i o ;  x i  ~ x <- x 2 d e n o t e s  t h e  d i s t a n c e  c o v e r e d  by t h e  SW; f i s  a 
p a r a m e t e r  ( c o n s t a n t  a t  l a r g e  R e y n o l d s  number s )  c h a r a c t e r i z i n g  t h e  a e r o d y n a m i c  r e s i s t a n c e  
o f  a u n i t  o f  s h i e l d  l e n g t h .  Once we have  s u b s t i t u t e d  i n t o  ( 1 . 1 )  t h e  r e l a t i o n s h i p s  a t  t h e  
c o m p r e s s i o n  d i s c o n t i n u i t y ,  e x p r e s s e d  in  t e r m s  o f  t h e  Mach number  M o f  t h e  p a s s i n g  wave,  
we o b t a i n  

q~(M, ?) dM/dx  = - - / / 2  ( 1 . 2 )  

for M(x I) = M 0 (M 0 is the Mach number of the original SW). The solution for Eq. (1.2) for 
the intensity of the SW at the outlet from the shield, i.e., M(x 2) = M I, has the form 

G (M0, ? ) - -  G (MI, ?) = / (x2 - -  x l) /2  

~I~ (1.3) 

M 1 

Is is quite cumbersome to calculate the integrals, and we attempted to attain it with the 
numerical Simpson method. For convenience in the calculations we derived an approximation 

of the function G(M) for 7 = 1.4 

0,4~I-- t (1 4) G(M) = 4 T--~ + 41n (M = -- ~) + 081n M +___! 
M - -  1" 

The deviation of function (1.4) from the true values does not exceed 5% when M = 1.01-4. 

On passing to the limit x 2 ~ xl let the quantity f(x 2 - xl)/2 in (1.3) strive toward 
a constant value of D, characterizing the attenuation of a SW by an isolated permeable bar- 
rier. For a three-dimensional wire grid with a specific permeability ~ (the ratio of the 
free cross-sectional area of one layer of the grid to the overall frontal area of the trans- 
verse cross section) and the grid interval s in the longitudinal direction f = CD(I - g)/s 
(C D is the coefficient of aerodynamic drag for the structural element of the grid layer). 
When x 2 - xl = (n - l)s + 0 (n represents the number of layers), D ~ CD(I - ~). As we can 
see, n is determined from the geometric characteristics of the barrier: the permeability 

and the shape of the structural element, namely: C D. Since the C D factor of poorly steam- 
lined bodies in a free flow at high Reynolds numbers are close in magnitude to one another 
[4], and since the thickness of the barriers has only a slight effect on the efficiency 
of SW extinction [5], it should be expected that all of the barriers will basically be char- 
acterized only by ~. 
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Fig. 1 

In order to verify the validity of the simplifying assumptions, we will use the experi- 
ments from [i, 5-11] into the extinction of SW by perforated barriers or grids. As an exam- 
ple, in Fig. i we have plotted the experimental data from [7-9] for barriers of various 
permeabilities. The experimental points have been processed in accordance with (1.3) and 
(1.4) by the method of least squares, which made it possible to determine n for a barrier 
with a given permeability. The parameter q is constant along each curve [Fig. la~ i) ~ = 
0.113, q = 4.5 [7]; 2) 0.347, 2.2 [7]; Fig. ib: i) ~ = 0.0385, q = 40 [8]; 2) 0.55, 1.6 
[9]; 3) 0.7, 0.58 [9]]. Thus, the hyDothesis as to the independence of n from M 0 is con- 
firmed. Analogous calculations have been carried out on the basis of the data from [I, 
5, 6, i0, ii]. In Fig. 2 we see the final relationship of q to ~. All of the points are 
grouped near the curve described by the equation 

~ 26(Q -~ -- i). (1 .5 )  

Un l ike  [1, 6-9, 11] in [5, 10] the a t t enua t i on  of a t r i a n g u l a r  SW is  sub jec ted to examinat ion,  
and in  [10] the SW has been generated by means of exp los ive  charges. The wave p r o f i l e  ap- 
p a r e n t l y  is inconsequential from the standpoint of the final results because of the relative- 
ly small thickness of the barriers being used here, in comparison to the wavelength. The 
measurements in [i, 5, 7, ii] were carried out for P0 = 0.i MPa, while in [6] they were 
carried out for P0 = 5"10-4 MPa (P0 is the initial pressure). The fact that the data from 
various authors are grouped about a common curve independent of the configuration of the 
perforated barriers and grids speaks in favor of the validity of the idea from [3] according 
to which the shock front moving through the blocked space experiences virtually no wake 
effects. 

2. Attenuation of a SW in a Cascade of Permeable Barriers. The efficiency of SW at- 
tenuation is altered when several permeable barriers are installed in the channel~ With 
small distances between barriers having a permeability of ~i the efficiency of attenuation 
SW at the second, third, i-th, etc., barriers is smaller than q2(~2), qa(~), qi(~i), etc. 
[9]. With larger distances the plane shock front formed after passage of the previous barrier 
can be regarded as the initial perturbation for the subsequent disturbance. In this event, 
the intensity of the shock wave passing through n permeable barriers is found from the condi- 
tions 

G(M~) = G(Mo)-- n~, 

(2.1) 

where M i and n i (i = i, 2 ..... n) are, respectively, the Mach number of the SW passing 
through the i-th barrier, and its attenuation parameter~ It is easy to see from (2.1) that 

G(Mn) = G(M0)-- ~ Ni, i.e., the total attenuation parameter ~m = ~ Hi. For identical bar- 
i = 1  i = l  

riers 

~]~ = nvl" ( 2 . 2 )  
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Figure 3 shows a comparison of the theoretical relationship (2.2) with the experimental 
data from [9] on the attenuation of an air SW with a single circular insert (I), a cascade 
of two inserts (2), and four (3) circular inserts with ~ = 0.55 (~ ~ 1.6). The distances 
between these inserts is s = i00 (4), 200 (5), and 400 mm (6)~ The pressure ratio Pf0/P0 at 
the incident SW is plotted along the axis of abscissas, while along the ordinate axis we 
see a plot of the parameter characterizing the attenuation of the SW (pf if the pressure 
in the SW passing through the shield). We can see from Fig. 3 that (2.2) offers a satis- 
factory prognosis. In this case, as the interval s between the barrier increases, the ac- 
curacy of relationship (2.2) rises. As for s = i00 mm the experimental points fall below 
the theoretical curve, which suggests the presence of a mutual barrier effect. 

The following relationship, having no theoretical foundation, is proposed in [12] for 
the attenuating effect of n permeable barrier on the SW: 

~z = ff'~ ( 2 , 3 )  

(8 i s  t h e  a t t e n u a t i o n  f a c t o r  f o r  t h e  e x c e s s  p r e s s u r e  in  t h e  SW as  i t  p a s s e s  t h r o u g h  a s i n g l e  
b a r r i e r  and ~Z i s  t h e  t o t a l  f a c t o r ) .  I t  i s  i n d i c a t e d  in  [12] t h a t  ( 2 . 3 )  i s  v a l i d  o n l y  in  
the case of virtually isolated barriers, i.e., for those at considerable distances from 
one another. Let us find a relationship between q and ~. When M - 1 ~ i, Eq. (1.2) has 
the following solution [13]: 

v + t /  i t ) 
~ = - - T - k g -  i ~vo- i  �9 

Since ~ = Apf/gpf0 (kp is the excess pressure at the front of the SW), then 

z (M o- i)~]-1. ( 2 . 4 )  

I ]1 2 (M 0-1) nq i.e , For n identical barriers, according to (2.3) we have ~z=~ I+--~-~ , �9 

~ = ~(nn), ( 2 . 5 )  

and conditions (2.2) and (2.3) when M0 ~ 1 are identical. Unlike D, the coefficient $ ac- 
cording to (2.4) depends on the intensity of the incident wave. This makes its utilization 
inconvenient in practical calculations. When linear approximation is not permissible, the 
relationship among B, M0, and N is more complex in nature than in (2.4). For purposes of 
illustrating the relationship between $ and M 0, Table 1 gives the values of ~ for a barrier 
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TABLE 1 TABLE 2 

Mo ~(2TI) ~2 A M0 

i,t 0,896 
i,2 0,838 
1,3 0,797 
t,4 O,773 
i,5 0,742 
2 0,680 
3 0,656 

l,l 
1,2 
i,3 
1,4 
1,5 
2 
3 

0,8i8 
0,7i7 
0,659 
0,603 
0,569 
0,478 
0,439 

0,803 
0,702 
0,635 
0,598 
0,55i 
0~463 
0,430 

0,0i8 
0,02i 
0,036 
0,008 
0,032 
0,030 
0,020 

with ~ = 0.55 (D ~ 1.6). We can see from Table 1 that when M0 > i, $ depends significantly 
on M 0. The data in Table 2 show the extent to which relationships (2.3) are valid for a 
cascade consisting of two "independent" barriers with identical ~ = 0.55. The magnitude 
of A characterizes the relative deviation of (2.3) from (2.5), a consequence of (2.2). We 
can see from Table 2 that over a broad range of M 0 numbers, Eq. (2.3) yields a rather pre- 
cise prognosis. 

One of the most important questions in this problem deals with the smallest distance 
between the barriers, at which these barriers may be held to be "independent." In order 
to solve this problem we will make use of the SW attenuation data in elongated permeable 
shields. It would be natural to expect that a cascade of circul~r barriers, each of which 
is determined by the attenuation parameter n(~), will function as a rough tube segment char- 
acterized by some value for the coefficient of hydraulic drag ~. As demonstrated in [14], 
the right-hand side of (1.3) in the case of a rough tube with annular inserts f(x 2 - xl)/2 = 
%(x 2 - xl)/r (r is the radius of the tube). Then, for the two adjacent "independent" barriers 
in such a shield the following condition should be satisfied; namely: 

%(s)s/r = 2~, ( 2 . 6 )  

where s i s  t h e  unknown d i s t a n c e  be tween t h e  b a r r i e r s .  We w i l l  t e s t  t h e  v a l i d i t y  o f  ( 2 . 5 )  
by u s i n g  t h e  d a t a  f rom [9] and t h e  r e s u l t s  o b t a i n e d  in  t h e  measurement  o f  t h e  h y d r a u l i c  
r e s i s t a n c e  o f  t u b e s  w i t h  c i r c u l a r  i n s e r t s ,  as  g i v e n  in  [ 1 5 ] .  F i g u r e  4 shows t h e  dependence  
o f  ~s r  - i  on t h e  d i s t a n c e  s be tween i d e n t i c a l  b a r r i e r s  w i t h  3 = 0 .55  (n = 1 . 6 ) ,  as  u sed  in  
t h e  e x p e r i m e n t s  c o n d u c t e d  in  [ 9 ] .  We s ee  t h a t  w i t h  an i n c r e a s e  in  s t h e  p a r a m e t e r  Asr -1 
i n c r e a s e s ,  r e a c h i n g  v a l u e s  o f  2D ( t h e  dashed  l i n e )  a t  a d i s t a n c e  o f  s - 150 mm. Th i s  r e s u l t  
i s  in  s a t i s f a c t o r y  a g r e e m e n t  w i t h  t h e  e x p e r i m e n t a l  d a t a  f rom [9] ( s e e  F i g .  3 ) .  The f a c t  
t h a t  Asr -1 when s > 150 mm i s  somewhat h i g h e r  t h a n  2~ can be e x p l a i n e d  by t h e  i n c r e a s e d  
c o n t r i b u t i o n  r e s u l t i n g  from t h e  r e s i s t a n c e  o f  t h e  smooth t u b e  segment  be tween  t h e  b a r r i e r s .  
In  t h i s  c a s e  t h e  i n c r e a s e  in  s w i l l  r e s u l t  in  g r e a t e r  a t t e n u a t i o n  o f  t h e  SW t h a n  when we 
t a k e  i n t o  c o n s i d e r a t i o n  o n l y  t h e  d rag  r e s u l t i n g  from t h e  shape  o f  t h e  b a r r i e r .  

Thus ,  r e l a t i o n s h i p s  ( 1 . 3 ) - ( 1 . 5 )  a l l o w  us t o  c a l c u l a t e  t h e  a t t e n u a t i o n  o f  a SW by a 
s i n g l e  p e r m e a b l e  b a r r i e r ,  w h i l e  ( 1 . 3 ) - ( 1 . 5 ) ,  ( 2 . 2 )  e n a b l e  us t o  c a l c u l a t i o n  t h i s  a t t e n u a t i o n  
f o r  a c a s a d e  o f  b a r r i e r s .  
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THEORY OF THE HARDENING OF BINARY MELTS WITH AN 

EQUILIBRIUM TWO-PHASE ZONE 

Yu. A. Buevich, L. Yu. Iskakova, and V. V. Mansurov UDC 526.421.4 

Descriptions of processes involved in directed crystallization is normally accomplished 
on the basis of concepts dealing with the existence of a clearly defined phase-transition 
front and reduces to the solution of various versions of the Stefan problem [1-3]. If the 
liquid that is subjected to hardening is one consisting of numerous components, the motion 
of the front is accompanied by a redistribution of the composition of the phases, and in 
addition to the equations of heat conduction, it is necessary also to deal with the equations 
of diffusion and the relationship between the temperature of the phase transition and the 
composition of the melt, or its dependence on the composition of the solution near the front. 
Under specific conditions the effective temperature of the liquidus ahead of the front proves 
to be higher than the temperature of the liquid phase, i.e., a metastable supercooled zone 
is formed [4]. The same situation is encountered in the hardening of supercooled single- 
or multicomponent liquids. 

In the metastable region conditions prevail for the growth of the solid phase nuclei, 
generated spontaneously or in the impurity crystallization cores. Moreover, the front becomes 
morphologically unstable, which may lead to the development of a system of dendrites. Either 
mechanism enhances the appearance of a transition two-phase zone (in which the liquid and 
solid phases coexist) ahead of the front, as well as to the partial removal of the supercool- 
ing. In the general case this zone is thermodynamically in a state of nonequilibrium, and 
its characteristics determine the relationship between the kinetic processes of formation 
and the growth of the solid-phase elements, as well as the velocity at which the front is 
displaced. Supercooling ranging from the very lowest to several tens of degrees has been 
experimentally established [5-8]. 

The traditional frontal formulation describes approximately the situation in which 
the two-phase zone is almost entirely absent, which is characteristic of pure liquids under 
conditions in which the morphological instability stimulates development of cellular struc- 
tures, but no dendrites (the majority of semiconductor and certain metal melts). In the 
opposite extreme case (melts with nuclei or crystallization catalysts, liquid seals, true 
aqueous solutions) it is permissible to use an approximation of an equilibrium two-phase 
zone in which supercooling has been entirely removed [9-12]. Then, in connection with the 
fact that the literature is full of an excess of categorically extreme assertions either 
as to the significance of concentration supercooling in those cases in which it should appear 
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